Complex Hyperbolic Cone Structures on the Configuration Spaces
نویسندگان
چکیده
The space of marked n distinct points on the complex projective line up to projective transformations will be called a configuration space in this paper. There are two families of complex hyperbolic structures on the configuration space constructed by Deligne-Mostow and by Thurston. We first confirm that these families are the same. Then in view of the deformation theory for real hyperbolic cone 3-manifolds, we review the families for small n.
منابع مشابه
Configuration Spaces of Points on the Circle and Hyperbolic Dehn Fillings
A purely combinatorial compactification of the configuration space of n (≥ 5) distinct points with equal weights in the real projective line was introduced by M. Yoshida. We geometrize it so that it will be a real hyperbolic cone-manifold of finite volume with dimension n − 3. Then, we vary weights for points. The geometrization still makes sense and yields a deformation. The effectivity of def...
متن کاملThe Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces
This paper generalizes the Gauss–Bonnet formula to a class of stratified spaces called Riemannian cone–manifolds. As an application, we compute the volumes of the moduli spaces M0,n with respect to the complex hyperbolic metrics introduced by Picard, Deligne–Mostow and Thurston.
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملHyperbolic Entailment Cones for Learning Hierarchical Embeddings
Learning graph representations via lowdimensional embeddings that preserve relevant network properties is an important class of problems in machine learning. We here present a novel method to embed directed acyclic graphs. Following prior work, we first advocate for using hyperbolic spaces which provably model tree-like structures better than Euclidean geometry. Second, we view hierarchical rel...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کامل